Vasculature-On-A-Chip for In Vitro Disease Models

نویسندگان

  • Seunggyu Kim
  • Wanho Kim
  • Seongjin Lim
  • Jessie S Jeon
چکیده

Vascularization, the formation of new blood vessels, is an essential biological process. As the vasculature is involved in various fundamental physiological phenomena and closely related to several human diseases, it is imperative that substantial research is conducted on characterizing the vasculature and its related diseases. A significant evolution has been made to describe the vascularization process so that in vitro recapitulation of vascularization is possible. The current microfluidic systems allow elaborative research on the effects of various cues for vascularization, and furthermore, in vitro technologies have a great potential for being applied to the vascular disease models for studying pathological events and developing drug screening platforms. Here, we review methods of fabrication for microfluidic assays and inducing factors for vascularization. We also discuss applications using engineered vasculature such as in vitro vascular disease models, vasculature in organ-on-chips and drug screening platforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures (RESEARCH NOTE)

Nowadays, faults and failures are increasing especially in complex systems such as Network-on-Chip (NoC) based Systems-on-a-Chip due to the increasing susceptibility and decreasing feature sizes. On the other hand, fault-tolerant routing algorithms have an evident effect on tolerating permanent faults and improving the reliability of a Network-on-Chip based system. This paper presents reliabili...

متن کامل

Chip Formation Process using Finite Element Simulation “Influence of Cutting Speed Variation”

The main aim of this paper is to study the material removal phenomenon using the finite element method (FEM) analysis for orthogonal cutting, and the impact of cutting speed variation on the chip formation, stress and plastic deformation. We have explored different constitutive models describing the tool-workpiece interaction. The Johnson-Cook constitutive model with damage initiation and damag...

متن کامل

Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint

A plethora of 3D and microfluidics-based culture models have been demonstrated in the recent years with the ultimate aim to facilitate predictive in vitro models for pharmaceutical development. This article summarizes to date the progress in the microfluidics-based tissue culture models, including organ-on-a-chip and vasculature-on-a-chip. Specific focus is placed on addressing the question of ...

متن کامل

A Vascular Endothelial Growth Factor-Dependent Sprouting Angiogenesis Assay Based on an In Vitro Human Blood Vessel Model for the Study of Anti-Angiogenic Drugs

Angiogenesis is the formation of new capillaries from pre-existing blood vessels and participates in proper vasculature development. In pathological conditions such as cancer, abnormal angiogenesis takes place. Angiogenesis is primarily carried out by endothelial cells, the innermost layer of blood vessels. The vascular endothelial growth factor-A (VEGF-A) and its receptor-2 (VEGFR-2) trigger m...

متن کامل

Integrating skin and vasculature in a Multi-Organ-Chip Platform

Background Tests for drug development require an almost perfect fit with the human (patho-) physiological microenvironment. The majority of skin equivalents currently commercially available are based on static culture systems emulating only human epidermis, or combining epidermis and dermis in so-called full thickness skin equivalents. None of the existing systems contain important elements, su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017